👮
Contract Cops
  • Mastering Ethereum Book
    • What is ethereum?
    • Tokens
    • Oracles
    • Decenralized Applications(DApps)
    • The Ethereum virtual machine
    • Ethereum basics
    • Ethereum clients
    • Cryptography
    • Wallets
    • Transactions
    • Chapter 7 - Smart Contracts & Solidity
    • Side Notes
      • Tokens
      • Smart Contracts and Solidity
  • Cryptography
    • Ethereum Cryptography - Cheatsheet
    • Assymetric vs symmetric cryptography
    • ECDSA vs RSA
    • Elliptic curves and ECDSA
    • Sha-256 Example
    • Sha-256
    • What are the different steps in SHA-256?
  • Ethereum Blocks
    • Block Headers
  • Learning Solidity
    • Storage vs memory
    • Upgradeable contracts
      • Proxy pattern in smart contracts
  • PoS
    • Proof of stake
  • PoW
    • PoW
  • Tokens
    • ERC-1155
    • ERC20
  • Cryptonomics
    • Automated market makers
    • Collateral Tokens
    • Collateralized Stablecoin
    • Fiat currency
    • Liquidity pool
    • Open Position: Meaning and Risk in Trading
    • Slippage
    • Spot price
  • Common Attack Vectors
    • Checking access control
    • Access control issues on critical functions
    • Account Existence Check for low level calls
    • Account Existence Check
    • Common attacks with contract/EOA addresses
    • Arithmetic under/overflow
    • Assert Attack
    • Assert require revert
    • Assert Violation
    • Bad Interface DOS
    • Bad pragma and compiler
    • Block Timestamp Manipulation
    • Bypassing contract check
    • Code With No Effects
    • Code size check vulnerability
    • Constructors with Care
    • Default Visibilities
    • Delegatecall
    • Delegatecall
    • Denial of Service (DoS)
    • DoS with block gas limit
    • Entropy Illusion
    • External contract referencing
    • Flash Loan Attack
    • Floating Point and Precision
    • Function selector abuse
    • Function selector abuse
    • Smart contract gas griefing
    • Hash collision parameters
    • Hash Collisions With Multiple Variable Length Arguments
    • Imprecise arithmetic
    • Improper Array Deletion
    • Incorrect array deletion
    • Incorrect interface
    • Insufficient Gas Griefing
    • Loop through long arrays
    • Message call with hardcoded gas amount
    • Not enough gas for ether transfer
    • Precision Loss in Calculations
    • Oracle Manipulation
    • Public Burn Function
    • Read-only reentrancy
    • Race Conditions/Front Running
    • Reentrancy Attacks
    • Reentrancy
    • Requirement Violation
    • Right-To-Left-Override control character (U+202E)
    • Shadowing State Variables
    • Short Address / Parameter attack
    • Signature Malleability
    • Signature Replay
    • Transaction Order Dependence
    • Tx.Origin Authentication
    • Unchecked CALL Return Values
    • Unexpected ether
    • Uninitialized Storage Pointers
    • Unsafe Ownership Transfer
  • EIP's
    • EIP155
    • EIP55
  • PoW
    • Ethash
    • Scrypt - RFC 7914
  • Questions for self evaluation
    • Questions 23/04/2023 (Nr: 84)
    • Usability guide for questions
  • Frequently asked questions
    • What is the difference between transaction and message?
    • What is the use of a interface or function without implementation?
  • UsefulResources
Powered by GitBook
On this page
  • Multiplication and Division of Contract Value
  • Prevention
  1. Common Attack Vectors

Precision Loss in Calculations

PreviousNot enough gas for ether transferNextOracle Manipulation

Last updated 2 years ago

When performing Integer division, Solidity may truncate the result.

Hence we must multiply before dividing to prevent such loss in precision

For example

50*100*15/15 = 5000

Let’s start with the division. After all, abc/c is equal to a/c * bc.

50/15*100*15 = 4999.9999999999995

This is a result of a floating point error. Instead of floating points, we get rounding errors in Solidity, and the second operation in Solidity would produce 4999.

We minimize rounding issues as much as possible by performing all multiplications first and division later.

Multiplication and Division of Contract Value

Imagine a function that calculates a fee based on the number of coins held.

If we perform division first the result would always result in zero

If we were to use

(coins * fee)/Total_coins

then it would have been greater than 1. And in this example it returns 3.

Therefore we must perform multiplication operations before division unless the limit of a smaller type which makes the operation fatal.

Prevention

  • Multiplication should always be performed before division to avoid loss of precision.

  • The calculated result for division and multiplication can be stored in an integer with more bits, but the operands must also be integers of the same size

  • The operands for the exponentiation function must be unsigned integers. Unsigned Integers with lower bits can be calculated and stored as unsigned integers with higher bits.

  • To apply an arithmetic operation to all of the operands, they must all have the same data type otherwise, the operation will not be performed.

Alt text