👮
Contract Cops
  • Mastering Ethereum Book
    • What is ethereum?
    • Tokens
    • Oracles
    • Decenralized Applications(DApps)
    • The Ethereum virtual machine
    • Ethereum basics
    • Ethereum clients
    • Cryptography
    • Wallets
    • Transactions
    • Chapter 7 - Smart Contracts & Solidity
    • Side Notes
      • Tokens
      • Smart Contracts and Solidity
  • Cryptography
    • Ethereum Cryptography - Cheatsheet
    • Assymetric vs symmetric cryptography
    • ECDSA vs RSA
    • Elliptic curves and ECDSA
    • Sha-256 Example
    • Sha-256
    • What are the different steps in SHA-256?
  • Ethereum Blocks
    • Block Headers
  • Learning Solidity
    • Storage vs memory
    • Upgradeable contracts
      • Proxy pattern in smart contracts
  • PoS
    • Proof of stake
  • PoW
    • PoW
  • Tokens
    • ERC-1155
    • ERC20
  • Cryptonomics
    • Automated market makers
    • Collateral Tokens
    • Collateralized Stablecoin
    • Fiat currency
    • Liquidity pool
    • Open Position: Meaning and Risk in Trading
    • Slippage
    • Spot price
  • Common Attack Vectors
    • Checking access control
    • Access control issues on critical functions
    • Account Existence Check for low level calls
    • Account Existence Check
    • Common attacks with contract/EOA addresses
    • Arithmetic under/overflow
    • Assert Attack
    • Assert require revert
    • Assert Violation
    • Bad Interface DOS
    • Bad pragma and compiler
    • Block Timestamp Manipulation
    • Bypassing contract check
    • Code With No Effects
    • Code size check vulnerability
    • Constructors with Care
    • Default Visibilities
    • Delegatecall
    • Delegatecall
    • Denial of Service (DoS)
    • DoS with block gas limit
    • Entropy Illusion
    • External contract referencing
    • Flash Loan Attack
    • Floating Point and Precision
    • Function selector abuse
    • Function selector abuse
    • Smart contract gas griefing
    • Hash collision parameters
    • Hash Collisions With Multiple Variable Length Arguments
    • Imprecise arithmetic
    • Improper Array Deletion
    • Incorrect array deletion
    • Incorrect interface
    • Insufficient Gas Griefing
    • Loop through long arrays
    • Message call with hardcoded gas amount
    • Not enough gas for ether transfer
    • Precision Loss in Calculations
    • Oracle Manipulation
    • Public Burn Function
    • Read-only reentrancy
    • Race Conditions/Front Running
    • Reentrancy Attacks
    • Reentrancy
    • Requirement Violation
    • Right-To-Left-Override control character (U+202E)
    • Shadowing State Variables
    • Short Address / Parameter attack
    • Signature Malleability
    • Signature Replay
    • Transaction Order Dependence
    • Tx.Origin Authentication
    • Unchecked CALL Return Values
    • Unexpected ether
    • Uninitialized Storage Pointers
    • Unsafe Ownership Transfer
  • EIP's
    • EIP155
    • EIP55
  • PoW
    • Ethash
    • Scrypt - RFC 7914
  • Questions for self evaluation
    • Questions 23/04/2023 (Nr: 84)
    • Usability guide for questions
  • Frequently asked questions
    • What is the difference between transaction and message?
    • What is the use of a interface or function without implementation?
  • UsefulResources
Powered by GitBook
On this page
  1. Common Attack Vectors

Code size check vulnerability

PreviousCode With No EffectsNextConstructors with Care

Last updated 2 years ago

You can determine if an address is a Solidity smart contract by checking the size of the code stored at the address. Assembly extcodesize is used in Solidity functions to determine the size of the code at a particular address. If the code size at the address is greater than 0 then the address is a smart contract.

This opcode returns the size of the code on an address. If the size is larger than zero, the address is a contract.

But if EXTCODESIZE is called from the constructor it returns 0.

And that's where a problem occurs.

To pwn a contract that contains Assembly extcodesize simple put a function in the attacking contract’s constructor. During contract creation when the constructor is executed there is no code yet so the code size will be 0. The constructor will run the function and bypass the target contract’s extcodesize check.

Let's look at the following image:

So after we now know how the attacker is creating a contract with code size returned by extcodesize equal to 0, let's look at the code of the attacker:

The Attack contract will call the target contract in the constructor. When the contract is created the target address will detect 0 code and the transaction will be successful. It puts the results in the bool isContract in the attack contract.

Alt text
Alt text
Alt text