👮
Contract Cops
  • Mastering Ethereum Book
    • What is ethereum?
    • Tokens
    • Oracles
    • Decenralized Applications(DApps)
    • The Ethereum virtual machine
    • Ethereum basics
    • Ethereum clients
    • Cryptography
    • Wallets
    • Transactions
    • Chapter 7 - Smart Contracts & Solidity
    • Side Notes
      • Tokens
      • Smart Contracts and Solidity
  • Cryptography
    • Ethereum Cryptography - Cheatsheet
    • Assymetric vs symmetric cryptography
    • ECDSA vs RSA
    • Elliptic curves and ECDSA
    • Sha-256 Example
    • Sha-256
    • What are the different steps in SHA-256?
  • Ethereum Blocks
    • Block Headers
  • Learning Solidity
    • Storage vs memory
    • Upgradeable contracts
      • Proxy pattern in smart contracts
  • PoS
    • Proof of stake
  • PoW
    • PoW
  • Tokens
    • ERC-1155
    • ERC20
  • Cryptonomics
    • Automated market makers
    • Collateral Tokens
    • Collateralized Stablecoin
    • Fiat currency
    • Liquidity pool
    • Open Position: Meaning and Risk in Trading
    • Slippage
    • Spot price
  • Common Attack Vectors
    • Checking access control
    • Access control issues on critical functions
    • Account Existence Check for low level calls
    • Account Existence Check
    • Common attacks with contract/EOA addresses
    • Arithmetic under/overflow
    • Assert Attack
    • Assert require revert
    • Assert Violation
    • Bad Interface DOS
    • Bad pragma and compiler
    • Block Timestamp Manipulation
    • Bypassing contract check
    • Code With No Effects
    • Code size check vulnerability
    • Constructors with Care
    • Default Visibilities
    • Delegatecall
    • Delegatecall
    • Denial of Service (DoS)
    • DoS with block gas limit
    • Entropy Illusion
    • External contract referencing
    • Flash Loan Attack
    • Floating Point and Precision
    • Function selector abuse
    • Function selector abuse
    • Smart contract gas griefing
    • Hash collision parameters
    • Hash Collisions With Multiple Variable Length Arguments
    • Imprecise arithmetic
    • Improper Array Deletion
    • Incorrect array deletion
    • Incorrect interface
    • Insufficient Gas Griefing
    • Loop through long arrays
    • Message call with hardcoded gas amount
    • Not enough gas for ether transfer
    • Precision Loss in Calculations
    • Oracle Manipulation
    • Public Burn Function
    • Read-only reentrancy
    • Race Conditions/Front Running
    • Reentrancy Attacks
    • Reentrancy
    • Requirement Violation
    • Right-To-Left-Override control character (U+202E)
    • Shadowing State Variables
    • Short Address / Parameter attack
    • Signature Malleability
    • Signature Replay
    • Transaction Order Dependence
    • Tx.Origin Authentication
    • Unchecked CALL Return Values
    • Unexpected ether
    • Uninitialized Storage Pointers
    • Unsafe Ownership Transfer
  • EIP's
    • EIP155
    • EIP55
  • PoW
    • Ethash
    • Scrypt - RFC 7914
  • Questions for self evaluation
    • Questions 23/04/2023 (Nr: 84)
    • Usability guide for questions
  • Frequently asked questions
    • What is the difference between transaction and message?
    • What is the use of a interface or function without implementation?
  • UsefulResources
Powered by GitBook
On this page
  1. Common Attack Vectors

Checking access control

PreviousCommon Attack VectorsNextAccess control issues on critical functions

Last updated 2 years ago

In Solidity, access control attacks may occur when a function that has important logic/restrictions is left without any access checks.

This could imply:

  • Logic that changes the owner

  • Authorization logic

  • Using delegatecall to access functions in proxy contracts

An example of a function vulnerable to an access exploit is as follows:

We can clearly see that this function is left in a state where anyone can access it and change the owner, stealing the contract.

Preventative techniquesA solution would be to add a require statement inside the function:require(msg.sender == owner, "Only owner can perform this action");In Solidity, there are the so called function modifiers that are useful when the same require logic has to be used within multiple functions. In the example above, this could look as follows:In most cases, when the contract/function within a contract is directly connected to changing owner access/banking properties, finance, etc. most of the cases, an access control point is needed.Be on the look out of whether a contract already contains some sort of an access system and see if all important functions implement their logic by using it.

1680509281850